在电池使用场景的分类中,电池被人们分为消费电池(3C电池,应用于手机、笔记本电脑、数码相机等)、动力电池(新能源汽车、轻型电动车、电动工具等)、储能电池(电站、通信基站等)。
对动力电池而言,它其实也是储能电池的一种。不过,由于受到汽车的体积与重量限制以及启动时的加速等要求,动力电池比普通储能电池有更高的性能要求,例如能量密度要尽量高、电池的充电速度要快、放电电流要大等。
根据标准,动力电池的容量低于80%就不能再用在新能源汽车了。
对储能电池而言,绝大多数储能装置无需移动,因此储能锂电池对于能量密度并没有直接的要求。至于功率密度,不同的储能场景有不同的要求。
用于电力调峰、离网型光伏储能或用户侧的峰谷价差储能场景,一般需要储能电池连续充电或连续放电两个小时以上,因此适合采用充放电倍率≤0.5C的容量型电池;对于电力调频或平滑可再生能源波动的储能场景,需要储能电池在秒级至分钟级的时间段快速充放电,所以适合≥2C功率型电池的应用;而在一些同时需要承担调频和调峰的应用场景,能量型电池会更适合些,当然,这种场景下也可以将功率型与容量型电池配合一起使用。
相对于动力锂电池而言,储能锂电池对于使用寿命有更高的要求。新能源汽车的寿命一般在5-8年,而储能项目的寿命一般都希望大于10年。动力锂电池的循环次数寿命在1000-2000次,而储能锂电池的循环次数寿命一般要求能够大于3500次。
在成本方面,动力锂电池面临和传统燃油动力源的竞争,储能锂电池则需要面对传统调峰调频技术的成本竞争。另外,储能电站的规模基本上都是兆瓦级别以上甚至百兆瓦的级别,因此储能锂电池的成本要求比动力锂电池的成本更低,安全性也要求更高。
动力锂电池与储能锂电池有一些区别,但从电芯上看,都是一样的,都可以采用磷酸铁锂电池和三元锂电池,主要差别在于BMS电池管理系统,电池的功率响应速度和功率特性、SOC估算精度,充放电特性等,都可以在BMS上去实现。