化学电池行业深度报告:缘起,挑战与机遇(上)

光锥智能
关注
  • 四、锂电池

  • 1.锂电崛起的核心推动因素

  • 1.1需求侧:双碳目标

  • 基于环保及产业结构性升级需求,全球主导型经济体已就双碳目标达成了战略共识,进而催生了能源消费电气化、电力生产清洁化变革。具体体现为汽车新能源转型,电力上游一次能源可再生化转型等。

  • 电池作为高效便携的储能载体,成为了上述产业转型(尤其是移动能源场景)重要的技术支撑载体。锂电池综合性能优势凸显,也因此成为当前应用最广的电池产品

  • 电池拥有超80%以上的能量转换效率。

  • 车载动力由燃油驱动转为电驱动过程中,一方面要求电驱动具备与燃油驱动同等程度的可用性,主要体现在动力性、可靠性及经济性三方面;另外由于电驱动与燃油驱动原理存在本质差异,因此也新增了安全性要求。锂电池因可用性与安全性的综合性能优异,已成为动力电池的长期主流选择。

  • 随着锂电产业链逐步成熟,叠加规模效应,锂电需求在加速外溢,一方面替代铅酸等传统电池体系的存量市场,另一方面更是开辟了储能等全新的应用场景。

  • 1.2供给侧:核心材料

  • 供给侧主要推动因素来自电池材料的进步。材料的研究过程遵循“量变积累-促成质变-量变积累”的模式。当前锂电池所处的“有机电解液+嵌锂化合物正极+碳基负极”体系是多年研发后的阶段性产物,中短期内材料层面的创新大多数将在这一体系内进行。

  • 1.2.1基于科学发现的颠覆式创新

  • 锂的发现:锂是金属元素中电位最低的元素(-3.040V),能提供较高的电压。基于这一核心优势,围绕锂作为电池材料的研究开始逐步展开;此外,锂还具备如下特点。

  • 锂源情况:锂以硬岩锂、卤水锂和海水锂状态存在。其中卤水锂本身已是游离态或者是游离的化合态,提取时可省掉开采、破碎、粗级选矿流程,因此是目前主要的锂源。

  • 锂的优势:除了低电位特点,锂还是质量最轻的金属(相对原子质量6.9,密度0.534g/cm3),等质量条件下可提供更多的电子(更大的电势差);同时,锂离子半径小,更容易在电解液中移动。

  • 用锂难点:锂元素性质太活泼,易于和水以及氧气反应,带来安全问题,导致锂的保存、使用及加工需要较高的环境条件。

  • 锂电池体系的确定:现有的锂电池体系在确立之前,其实经历了较长时间的科研及产业验证过程,中途还不乏出现一些“弯路”。

  • 电解液体系:由于锂化学性质活泼,因此学界最早在电解液的选取上达成了共识,即需要采用非水电解质体系。最终在1958年,由伯克利的哈里斯确立了有机电解液这一体系,并沿用至今。

  • 正极材料确定:从上帝视角看,一开始在确立正极材料时产学界其实走了很大的“弯路”,因为相关正极材料的研究都是以锂金属作为负极而展开的,而在有机液体+电解质框架下,锂金属电池的安全性始终无法解决。

  • 因此我们可以看到,虽然从1970开始Sanyo、Panasonic、Exxon Mobil、Moli Energy等公司相继开发了各类型不同正极材料的锂金属电池并最终实现了商业化,但最终还是以NEC(收购了Moli Energy)宣布永久放弃将金属锂负极用于可充电电池路线为标志,大多数企业停止了对锂金属电池的开发。

  • 但需要说明的是,即便是走了“弯路”,在过程中所积累的阶段性成果(量变)也为后续及未来锂电池的发展做出了贡献。如1972年,Whittingham在发明锂离子原电池的基础上,开发了锂金属二次电池,对锂离子嵌入与脱嵌反应机制给出了很好的解释;1983年,Peled等人提出“固态电解质界面膜”(solid electrolyte interphase,简称SEI)模型,证实了SEI对锂电池可逆性与循环寿命的关键性影响等。

  • 备注:金属锂负极有严重的锂枝晶问题。对锂电池来说,放电时锂会被氧化成离子进入电解质最终抵达正极;重新充电时,这些锂离子会获得电子再沉积到锂金属负极的表面。但是锂在电极上的沉积速度不一样,因此金属锂不会均匀的覆盖在电极表面,而是会在沉积的过程中形成树枝状的晶体。枝晶生长得过长就会折断,不再参与反应(死锂),给电池体系带来不可逆的容量损失;有学者认为,长大的枝晶会刺破电池正负极之间的隔膜,造成短路,埋下电池过热自燃或爆炸的安全隐患。不过最新有研究显示,枝晶不一定会刺破隔膜,其树状结构因为某些机理会使得电池临界温度大为降低(即在不刺破隔膜的情况下),从而使热失控更容易发生。

  • 化学电池行业深度报告:缘起,挑战与机遇(上)

    锂枝晶生成机理

    来源:Scale Partners

    负极材料确定,及配套对应的正极材料:为了提高电池安全性,直观逻辑是用其他化合物替代锂金属作为负极,但随之而来的是电池电势差下降(其他类型化合物电势高于锂金属),进而使得电池能量密度下降。因此需要对应开发高压正极与配套电导率和耐热性较好的电解液,由于相关研发工作挑战较大,锂金属二次电池研究停滞不前,最终业界开始探索其他方案,即分别在负极层面、电解液层面进行改进。

    化学电池行业深度报告:缘起,挑战与机遇(上)

    锂离子电池未来发展趋势:2019年诺贝尔化学奖颁给了Goodenough、Whittingham和吉野彰三人,以表彰他们对锂离子电池研发的卓越贡献,目前受制于锂离子电池原理的限制,现有体系的锂离子电池能量密度已经从每年7%的增长速率下降到2%,并正在逐渐逼近其理论极限。与之相反,随着社会进步,人们对便携、清洁生活的需求更加强烈,这种反差势必会催生下一代科学发现新的材料体系,实现新一轮的破坏式创新。

    1.2.2既定框架下的渐进式创新

    在确定体系框架下(嵌锂正极、有机电解液及石墨负极),锂离子电池产业进行渐进式创新过程。材料层面,主要以正负极材料变革为主,电解液、隔膜以及辅件随两极材料的更替或围绕能量密度,安全性等指标进行优化。以时间跨度划分短中长时期,锂离子电池将开启不同的创新历程。

    • 短期:正极主导依旧是NCM及LFP,但将迎来丰富的改性和组分变动。NCM趋势是高镍低钴/无钴,LFP则与锰等结合提高电压。此外,二者混装可综合提高系统性能。

    • 中期:以核心能量密度指标为参照,当能量密度≥350-400Wh/kg,液态体系下正极富锂锰基、高电压正极等是可行的方向;负极则依赖硅基负极及其改性或组分变动材料。

    • 长期:对能量密度的追求终将驱使电池体系由液到固的转变,固态电解质高安全特质可支持配套材料的颠覆式改进(负极由嵌锂改为金属锂),极大提升能量密度。颠覆也体现在产业层面,全固态电池最终将改变电解质、隔膜行业,但在中短期内,成熟的正负极配合混合固液的模式更靠近产业化,因此有机液态电解质与隔膜仍有应用空间。

    声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
    侵权投诉

    下载OFweek,一手掌握高科技全行业资讯

    还不是OFweek会员,马上注册
    打开app,查看更多精彩资讯 >
    • 长按识别二维码
    • 进入OFweek阅读全文
    长按图片进行保存